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We derive an analytic formula for subtracting the spurious self-forces in particle–mesh methods that use
the analytical differentiation scheme, such as the Smooth Particle Mesh Ewald (SPME) method and the
Particle–Particle Particle–Mesh (P3M) method with analytical differentiation. The impact of the self-forces
on the accuracy of the particle–mesh methods is investigated, and it is shown that subtracting them can
improve the accuracy of the calculation for some choices of the method’s parameters. It is also suggested
to subtract exactly the approximate, mesh-computed, self-energy of each particle, replacing them by the
exact value. Subtracting in this way the self-energy and self-force of each particle not only improves the
accuracy, but also reduces the violation of momentum and energy conservation in particle–mesh methods
with analytical differentiation.

 2011 Elsevier B.V. All rights reserved.

1. Introduction

The computation of long-range forces in a many-particle system
is a demanding task that scales a priori as O (N2) with the num-
ber N of particles. Particle–mesh methods reduce the complexity
of this problem to O (N log N) by discretizing the system onto a
mesh and by taking advantage of the Fast Fourier Transform (FFT)
algorithm to solve the Poisson equation in Fourier space, where
it reduces to a simple multiplication by the Green function. For
higher efficiency, the pair interaction is moreover decomposed into
a short-range and a long-range parts, with the short-range inter-
actions computed in real-space, as in the Ewald method [1]. The
Particle–Particle Particle–Mesh (P3M) method [2] and the Smooth
Particle Mesh Ewald (SPME) method [3] are two such particle–
mesh methods that are widely used to compute Coulomb or grav-
itational forces in computer simulations.

In particle–mesh methods, various routes have been proposed
to compute forces from the mesh-based potential:

• differentiation in real space by finite differences,
• differentiation in real space using the exact gradient of the

assignment function used to interpolate the charge density
onto/from the mesh,

• differentiation in Fourier space by multiplying the potential
by ik.

The second route is referred to as the analytical differentiation
(AD) scheme, and it is used in the optimal energy-conserving
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scheme discussed in Hockney and Eastwood’s book [2]. The third
route, called the ik-differentiation or force-interpolation scheme,
corresponds to calculate the electric (or gravitational) field at each
mesh point, and to interpolate this vectorial “force” field back to
the particle positions. The finite-differences scheme was favored
by Hockney and Eastwood in their implementation of the P3M
method, but the other schemes, implemented first in the PME
method [4] (for ik-differentiation) and in the SPME method [3]
(for AD differentiation), proved to be efficient and were later also
implemented in the P3M method [5,6].

Each scheme has its own merits and drawbacks. The ik-
differentiation scheme is the most accurate one but also the most
computationally expensive one, as it requires 3 inverse FFTs to
transform the vectorial electric field mesh back to real space (com-
pared to only one inverse FFT of the potential mesh in the other
schemes). The higher accuracy of this scheme permits however the
use of a coarser mesh, and accepting the two additional Fourier
transforms can be competitive on desktop computers (this route
becomes however less attractive in parallel distributed-memory
computers because of the global communications required by the
FFT’s) [7]. As shown by the thorough analysis of particle–mesh
methods in Hockney and Eastwood’s book, the ik-differentiation
and finite-differences schemes conserve momentum but not en-
ergy, while analytical differentiation conserves energy (in the limit
of small time steps) but not momentum [2, §5.3.3, §5.5 and §7.6].
In the AD scheme, a correction to all forces must be applied to
conserve at least the center-of-mass momentum [3]. This correc-
tion has unfortunately the collateral effect of breaking the exact
conservation of energy (a mass-weighted correction reduces this
drawback but does not remove it entirely) [8].
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When a local violation of momentum conservation can be ac-
cepted, for example when the system is coupled to a thermostat,
analytical differentiation can be the most efficient route since it
requires less operations than the other schemes (especially when
compared to a finite difference operator of high order). The AD
scheme is commonly used in constant-temperature simulations
of condensed matter, plasmas and soft matter systems, including
large-scale biophysical simulations.

The main drawback of analytical differentiation is of course
its violation of momentum conservation, which arises both be-
cause the pair force (computed via the mesh) does not obey the
action–reaction principle, and because each particle is subjected to
a self-force that depends on its position relative to the mesh. It
has been proposed recently to subtract the self-forces by using a
tabulation of the self-force determined at the beginning of a simu-
lation [9,10]. After a brief reminder of the AD scheme (Section 2),
we derive in Section 3 analytical formulae for the self-force and
self-energy, for any position of a particle within a mesh cell. These
formulae provide a better understanding of the self-interactions,
and can be used to subtract them directly without having to first
tabulate them. The accuracy gain obtained by subtracting self-
forces in the analytically differentiated P3M method and the SPME
method is discussed in Section 4.

2. The analytical differentiation scheme

We consider a system made up of N charges qi at positions ri
in a periodic box of dimensions L1, L2, L3. The box is assumed to
be orthorhombic, and its volume is V = L1L2L3. The particle–mesh
methods use a mesh M of dimensions N1, N2, N3. The lattice spac-
ings are h1 = L1/N1, h2 = L2/N2, h3 = L3/N3 and the grid nodes
are rn = (h1n1,h2n2,h3n3), ni = 0 . . . Ni . Formally, the energy of
the system is approximated on the mesh by

EPM = 1
2

∑

rn,rn′ ∈M
qrn qrn′ G(rn − rn′) (1)

where G(rn) is the lattice Green function in real space for pe-
riodic boundary conditions. The charges at each mesh point are
computed via an assignment function W (r),

qrn =
N∑

i=1

qi W (ri − rn), (2)

where W (r) is the Hockney–Eastwood charge assignment func-
tion [11,2], equal to a product of three one-dimensional centered
B-splines of order P [12]. In the P3M method, the lattice Green
function is adjusted so that Eq. (1) gives the best possible discrete
approximation to the energy of the original system in continuous
space, while the lattice Green function in the SPME method differs
from the optimal one [12]. In the analytical differentiation scheme,
the forces are obtained by differentiating analytically the approxi-
mate energy (1):

F PM
i = −∇i EPM

= −
∑

rn,rn′ ∈M
(∇iqrn )qrn′ G(rn − rn′)

= −qi

∑

rn∈M
Φrn∇i W (ri − rn) (3)

where we used the fact that G(rn) is even and introduced the
mesh-based potential

Φrn =
∑

rn′ ∈M
qrn′ G(rn − rn′). (4)

The particle–mesh force (3) is hence obtained by interpolating the
mesh-based potential back to the particle position using the gra-
dient of the charge assignment function. The convolution (4) for
the potential mesh is computed in practice as a multiplication in
Fourier space by the reciprocal lattice Green function G̃(kn), the
result of which is transformed back to real space to compute the
forces via (3). The expression of the optimal G̃(kn) for the analyt-
ically differentiated P3M method can be found in Ref. [6], while
the corresponding expression for the SPME method is derived in
Ref. [13]:

G̃SPME(kn) = φ̂(kn)

(
∑

m∈Z3 Û (kn+N·m))2
(5)

where N = diag(N1, N2, N3) is a diagonal matrix made with the
mesh dimensions and φ̂(k) is the pair interaction between the
particles in Fourier space. When the pair interaction is decom-
posed according to the Ewald method [1,14], φ(r) corresponds to
the Coulomb interaction of a point charge interacting with a Gaus-
sian charge distribution of width α−1: φ̂(k) = 4π

k2 exp(−k2/(4α2)).
The complementary interaction ψ(r) ≡ 1/r −φ(r) = (1−erf(αr))/r
is short-ranged and computed in real space by direct pair-wise
summation. The Ewald screening length α−1 is a free parameter
that impacts, with an exponential dependence, the accuracy of the
method, but not its computational cost; it has to be fine-tuned for
getting the best accuracy (see Section 4). The wavevector kn be-
longs to the finite reciprocal mesh M̃ = {kn = n1

2π
L1

ê1 + n2
2π
L2

ê2 +
n3

2π
L3

ê3} where nβ = −Nβ/2 + 1,−Nβ/2 + 2, . . . , Nβ/2, β = 1,2,3.

The function Û (k) = Ŵ (k)/(h1h2h3) is equal to the Fourier trans-
form of the B-spline assignment function W (r) of order P divided
by the volume of a mesh cell:

Û (kn) =
(

sin(πn1/N1)

πn1/N1

sin(πn2/N2)

πn2/N2

sin(πn3/N3)

πn3/N3

)P

. (6)

3. Expressions for the self-force and self-energy

The self-force is an artefact caused by the analytical differentia-
tion scheme which breaks a symmetry: the forward and backward
mapping of the charges onto/from the mesh is not performed us-
ing the same charge assignment function, since its gradient is used
in the force interpolation (3) [2, p. 151]. Cerutti et al. [9] measured
the self-force at various points in a mesh cell, and showed that the
self-force, along direction β = 1,2,3, on a charge q located at r is
well described by a Fourier sine series

F self
β (r) & q2

∞∑

n=1

a(n)
β sin(n2π sβ ), sβ = rβ

hβ
. (7)

Note that the self-force is periodic over distances hβ , as expected.
More generally, the self-force can be expanded as

F self
β (r) = q2

∑

m∈Z3

b(m)
β sin

(
2π(m1s1 + m2s2 + m3s3)

)
. (8)

We prove in Appendix A that, for an orthorhombic simulation cell,
the Fourier coefficients b(m)

β are given by

b(m)
β = 2πmβ

hβ

1
2V

∑

kn (=0

G̃(kn)
∑

m′∈Z3

Û (kn+N·m′)Û (kn+N·(m′+m)).

(9)

We note that these coefficients are odd in m: b(−m)
β = −b(m)

β . The

coefficients a(n)
β in expansion (7) are therefore given by a(n)

β =
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2b
(nêβ )

β , or, fully explicitly,

a(n)
β = 2πmβ

hβ

1
V

∑

kn (=0

G̃(kn)
∑

m′∈Z3

Û (kn+N·m′)Û (kn+N·(m′+m))

(10)

where m is fixed to m = nêβ with êβ the unit vector in direc-
tion β . The general formula (9) for the coefficient b(m)

β can be used
to compute terms beyond the decoupled approximation (7), for
example terms varying like sin(2π(s1 + s2)), sin(2π(s1 + s3)) or
sin(2π(s2 + s3)).

The self-interaction energy EMS(r) of a charged particle located
at r can also be expressed as a Fourier series. As shown in Ap-
pendix A, we have

EMS(r) = q2
∑

m∈Z3

c(m) cos
(
2π(m1s1 + m2s2 + m3s3)

)
(11)

with coefficients given by

c(m) = − 1
2V

∑

kn (=0

G̃(kn)
∑

m′∈Z3

Û (kn+N·m′)Û (kn+N·(m′+m)). (12)

EMS(r) is the approximate (mesh-computed) “Madelung self-
energy” of a particle (see [15]), defined as the sum of the in-
teraction energy of the particle with itself (“Ewald” self-energy)
and with its own periodic images (Madelung energy). Note that
F self(r) = −∇EMS(r). The self-force is therefore a consequence of
the approximate space-dependent self-energy and of the analytical
differentiation scheme.

4. Numerical results and discussion

Our test system is made up of N = 800 charged particles (400
carry a positive and 400 a negative unit charge) distributed at ran-
dom in a cubic simulation box of length L = 20 units. Forces are
measured in units of C2/L2 where the unit of charge C and the
unit of length L are arbitrary (C and L could be for example
the electronic charge and one Ångström, or a solar mass and a
parsec in a cosmological simulation). If the unit of length is mul-
tiplied by a scale factor s > 0 (L′ = sL), forces are multiplied by
a factor s−2 and the density of the system is multiplied by fac-
tor s−3 (i.e. it is reduced if s > 1). By applying such a scaling to
our results, the density of our test system (0.1 particle/L3) can
easily be converted into any other value. The results obtained for
our test system are therefore representative for charged systems
characterized by a uniform random charge distribution of arbitrary
density. We chose the same reference density 0.1 particle/L3 as
in Ref. [12] but work with a system size twice larger for bet-
ter statistics and for allowing larger real-space cutoffs (note that
results for L = 10, N = 100, mesh size M = N1N2N3 = 323 and
real-space cutoff rc = 4 are equivalent by extensivity to results for
L = 20, N = 800, mesh size M = 643 and the same cutoff rc = 4).
We varied the mesh size from M = 163 to 643, the real-space cut-
off from rc = 2 to 9 and the spline interpolation order P from
3 to 7.

Fig. 1 shows the accuracy gain brought by subtracting the self-
forces in the P3M algorithm with analytical differentiation, as a
function of the Ewald splitting parameter α, for various choices
of the mesh size and of the real-space cutoff distance rc . The
spline interpolation order is fixed to P = 5, but similar curves are
found for other values of P . Analogous results are obtained for the
SPME method (data not shown). When rc = 9, the optimal accu-
racy of the P3M method is obtained when α & 0.3 for M = 163

and α & 0.4 for M = 643. The optimal value of α shifts to larger

Fig. 1. The root-mean-square accuracy 'F =
√

1
N

∑
i(F i − F exact

i )2 of the P3M forces
(computed with analytical differentiation) is shown for our uniform test system
(see text) as a function of the Ewald parameter α for different mesh sizes (from
163 to 643) and different real-space cutoff distances rc (from 2 to 9). The spline
interpolation order is set to P = 5. The accuracies of the particle–particle part of
the force calculation for cutoffs rc = 2,3 and 4 are shown as dotted lines. Solid
lines represent the accuracy of the particle–mesh forces obtained when self-forces
are subtracted, while dashed lines correspond to the accuracy with self-forces in-
cluded.

Table 1
Fourier coefficients b(m)

β for the self-force along direction β = 1 computed using

Eq. (9) for a cubic box of side L = 20, mesh size M = 323, Ewald parameter α =
0.83 and spline interpolation order P = 5. The self-force F self

β=1(r1, r2, r3) does not
depend solely on particle coordinate r1; its dependence on coordinates r2 and r3
is described by Fourier coefficients with vector m = (m1,m2,m3) not purely along
direction 1.

m1 m2 m3 Fourier
coefficient (L−2)

1 0 0 1.706×10−3

2 0 0 1.528×10−4

3 0 0 4.198×10−5

4 0 0 1.722×10−5

. . .

1 ±1 0 1.960×10−6

1 0 ±1 1.960×10−6

2 ±1 0 1.682×10−7

values when the real-space cutoff is reduced. For rc = 3, the opti-
mal value of α is for example αopt & 0.83 for M = 323 and P = 5.
With parameters in this range, the accuracy of the forces is im-
proved by about 30% when the self-forces are subtracted.

When using a large cutoff rc & 9 (and hence a small α), no gain
in accuracy is obtained by subtracting the self-forces: the dom-
inant source of error is then not the self-forces, but errors in the
interparticle forces. It is therefore worthy to subtract the self-forces
only when one uses a relatively small cutoff in the simulation. The
choice of the cut-off is dictated in part by the particular system
under study (i.e. whether there are other short-range interactions
to be computed in the pair-wise summation in real space) and by
the respective timings, for various combination of parameters rc ,
M and P , of the particle–particle part and of the particle–mesh
part of the P3M (or SPME) method. Decreasing the cut-off makes
indeed the particle–particle part of the algorithm faster, but the
particle–mesh calculation has to be able to deliver the required
accuracy sufficiently quickly. At the end, the cutoff is determined
from the optimal set of parameters {rc, M, P } that provides the
prescribed accuracy with the shortest possible computational time.
Small cut-offs are usually present in simulations of dense (charged)
systems.
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We list in Table 1 the first few Fourier coefficients b(m)
β for the

self-force in direction β = 1, calculated with Eq. (9) for parameter
values in the region where the subtraction of the self-force brings
a substantial increase in accuracy. Thanks to the rapid decay of the
coefficients, the Fourier series of the self-force can be truncated es-
sentially after the first two terms, in agreement with the findings
of Ref. [9]. The self-force F self

β=1(r1, r2, r3) does not depend solely on
particle coordinate r1. Its dependence on the other coordinates is
described by Fourier coefficients with vector m = (m1,m2,m3) not
purely along direction 1. As these terms are found to be smaller
than the uncoupled terms a(n)

β for n 6 4, they can safely be ne-
glected, unless one wants to calculate the self-force to a very high
precision.

Though particle–mesh algorithms with analytical differentiation
don’t conserve momentum, they do conserve energy in the limit
of small time steps. The subsequent correction of forces to enforce
conservation of the center-of-mass momentum breaks down how-
ever this exact conservation. To preserve it as well as possible, one
has to subtract not only the self-forces, but also the interaction
energy EMS(r) of each particle with itself and with its periodic
images, which is given by formula (11). The exact Madelung self-
energy of a particle (which is a constant) can then be added back
so that particles have the right self-energy associated to the pe-
riodic boundary conditions. In this way, the energy (1) of the
discretized system is modified in a way consistent with the sub-
traction of the self-forces to maintain the equality F i = −∇i EPM. A
correction of this kind has been introduced in Ref. [16] to remove,
on average, the bias of the P3M energies that is caused by the
approximate (mesh computed) self-interactions. Correcting exactly
these self-interactions at the level of each particle will improve the
accuracy of the computed energies beyond the average correction
of Ref. [16].

In summary, we have shown that the accuracy of particle–
mesh calculations can be enhanced, especially for small cut-offs,
by removing (or correcting in the case of the energy) the self-
interaction of each particle. Our analytic expressions for the self-
interactions, namely the self-force associated to the analytical dif-
ferentiation scheme and the self-energy, can be evaluated during
a simulation at virtually no computational cost. A further benefit
of subtracting the self-interactions is that it reduces the amount
of non-conservation of momentum (and energy) in particle–mesh
methods with analytical differentiation.

Appendix A. Proof of formulae (8)–(9) for the self-force

Let F (r1, r2) be the particle–mesh force felt by a test particle
with unit charge at r1 due to a particle with unit charge at r2
when analytical differentiation is used. That function can be ex-
pressed as a Fourier series in both variables

F (r1, r2) = 1
V 2

∑

k1,k2

F̂ (k1,k2) ei(k1·r1+k2·r2) (A.1)

where the Fourier coefficients are given by [10]

F̂ (k1,k2) = −ik1 V Û (k1)Û (k2)G̃
(
kG

1
) ∑

m∈Z3

δk1+k2+kN·m . (A.2)

Vector kG
1 is defined as in Ref. [10] – that is as vector k1 folded

back into the first Brillouin zone M̃; matrix N and vector kn (here
for n = N · m) are defined in Section 2 of the main text. The self-
force is obtained by setting r1 = r2 in (A.1):

F self(r)

= F (r, r)

= 1
V

∑

k1,k2

(−ik1)Û (k1)Û (k2)G̃
(
kG

1
)∑

m

δk1+k2+kN·m ei(k1+k2)·r

= 1
V

∑

k1

(−ik1)G̃
(
kG

1
)
Û (k1)

∑

m

Û (k1 + kN·m)e−ikN·m·r

= − 1
V

∑

k1

k1G̃
(
kG

1
)
Û (k1)

∑

m

Û (k1 + kN·m) sin(kN·m · r)

(A.3)

where the last equality holds because G̃(k) and Û (k) are even
functions of vector k. Since kN·m ·r = 2π(m1s1 +m2s2 +m3s3) with
sβ = rβ/hβ , the self-force is periodic over distances hβ and we can
write

F self(r) =
∑

m

b(m) sin
(
2π(m1s1 + m2s2 + m3s3)

)
(A.4)

where

b(m) ≡ − 1
V

∑

k1

k1G̃
(
kG

1
)
Û (k1)Û (k1 + kN·m). (A.5)

Decomposing the wavevector k1 as k1 = kn + kN·m′ with kn = kG
1

the folded position into the first Brillouin zone M̃ and m′ ∈ Z3, we
find that the term with kn gives a contribution to the self-force
that vanishes by symmetry, since kn is odd while G(kn) is even
and

f (m)(kn) ≡
∑

m′∈Z3

Û (kn+N·m′)Û (kn+N·m′+N·m) (A.6)

is an even function of kn for any fixed vector m. This result corre-
sponds to the absence of self-force in the case of ik-differentiation
[in that scheme the particle–mesh pair force is indeed given
by (A.2) with k1 replaced by kG

1 ]. Eq. (A.5) reduces therefore
to

b(m) = − 1
V

∑

kn∈M̃
G̃(kn)

∑

m′∈Z3

kN·m′ Û (kn+N·m′)Û (kn+N·m′+N·m).

(A.7)

Since b(m) = −b(−m) , we can rewrite the previous expression as

b(m) = b(m) − b(−m)

2
= kN·m

1
2V

∑

kn

G̃(kn) f (m)(kn) (A.8)

where symmetries were used to factor out the vector kN·m . This
formula for coefficient b(m) is equivalent to expression (9) given in
the main text.

Formulae (11)–(12) for the Madelung self-energy EMS(r) of a
particle can be obtained by integrating term by term the Fourier
series (A.4) for the self-force. Alternatively, it can also be de-
duced directly by noticing that EMS(r) is given by the first line
of Eq. (A.3) in which factor (−ik1) is replaced by 1

2 .

References

[1] P.P. Ewald, Ann. Phys. 369 (1921) 253–287.
[2] R.W. Hockney, J.W. Eastwood, Computer Simulations Using Particles, McGraw–

Hill, New York, 1981.
[3] U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee, L. Pedersen, J. Chem.

Phys. 103 (1995) 8577–8593.
[4] T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98 (1993) 10089–10092.
[5] R. Ferrell, E. Bertschinger, J. Mod. Phys. 5 (1994) 933.
[6] H. Stern, K. Calkins, J. Chem. Phys. 128 (2008) 214106.
[7] H. Wang, F. Dommert, C. Holm, J. Chem. Phys. 133 (2010) 034117.
[8] R. Skeel, D. Hardy, J. Phillips, J. Comput. Phys. 225 (2007) 1–5.



Author's personal copy

V. Ballenegger et al. / Computer Physics Communications 182 (2011) 1919–1923 1923

[9] D. Cerutti, R. Duke, T. Darden, T. Lybrand, J. Chem. Theory Comput. 5 (2009)
2322–2338.

[10] A. Neelov, C. Holm, J. Chem. Phys. 132 (2010) 234103.
[11] J.W. Eastwood, Computational Methods in Classical and Quantum Physics, Ad-

vance Publications Limited, 1976, pp. 206–228.
[12] M. Deserno, C. Holm, J. Chem. Phys. 109 (1998) 7678.

[13] V. Ballenegger, J.J. Cerdà, C. Holm, A simple error estimate for the SPME
method, J. Chem. Theory Comput., submitted for publication..

[14] D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd ed., Academic
Press, San Diego, 2002.

[15] J.J. Cerdà, V. Ballenegger, O. Lenz, C. Holm, J. Chem. Phys. 129 (2008) 234104.
[16] V. Ballenegger, J.J. Cerdà, O. Lenz, C. Holm, J. Chem. Phys. 128 (2008) 034109.


